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Using a combination of classical molecular dynamics simulation and first principles molecular orbital theory,
we provide the first comprehensive study of the equilibrium geometries, energetics, electronic structure, vertical
ionization potential, and magnetic properties of Ni clusters containing up to 21 atoms. The molecular dynamics
simulation makes use of a tight binding many-body potential, while the calculations based on molecular
orbital theory are carried out self-consistently using the numerical atomic bases and the density functional
theory. The adequacy of the molecular dynamics results on the energetics and equilibrium geometries is
tested by comparing the results with those obtained from the self-consistent molecular orbital theory for
clusters of up to six atoms. For larger clusters, equilibrium geometries were obtained from molecular dynamics
simulation, and their electronic structure and properties were calculated using molecular orbital theory without
further geometry reoptimization. Frozen core and local spin density approximations were used in the molecular
orbital calculations. In small clusters (n e 6), the calculations were repeated by including all electrons and
the gradient correction to the exchange-correlation potential. The calculated vertical ionization potential
and magnetic moments of Ni clusters are compared with recent experimental data.

I. Introduction

The most distinguishing feature that makes clusters different
from any other form of matter is their finite size. Due to the
large surface-to-volume ratio, clusters exhibit1 unique geometries
and electronic and magnetic properties. The study of the
evolution of the structural, electronic, and magnetic properties
of clusters has become an important topic, as it bridges our
understanding among atoms, molecules and solids. In this
context the study of the coupling between cluster geometry and
electronic structure is particularly interesting, as clusters, unlike
their bulk phases, can exhibit2 isomers that are energetically
nearly degenerate. While the existence of cluster isomers can
be inferred directly from reactivity experiments,3 their precise
structural identification remains a formidable problem both from
theoretical and experimental perspectives. Experimentally,
determination of cluster geometries is difficult, as the clusters
are too large for spectroscopic probes and too small for
diffraction probes. Theoretically, the number of local minima
as well as the number of geometrical parameters increase so
rapidly with size that finding the global equilibrium structure
of clusters of a few dozen atoms becomes an almost impossible
task. While systematic studies of the evolution of atomic and
electronic structure, based on first principles calculations, are
available for simple metal clusters containing tens of atoms,
very few studies exist for transition metal clusters containing
more than six atoms.
The nature of bonding among atoms in transition metal

clusters is intermediate between the free electron behavior in
alkali metal clusters and the strong covalent character in carbon
and silicon clusters. In addition, the large number of d electrons
bunched into closely spaced energy levels makes many of these
clusters magnetic. Interestingly, it is because of these complexi-
ties that transition metal clusters exhibit rich physics and
chemistry. Recently, several experimental studies of the
electronic structure,4 vertical ionization potential,5 reactivity,6

and magnetic moments of Ni clusters7,8 containing up to several

hundred atoms have been reported. Most of the interesting size-
specific properties, however, emerge in clusters containing less
than 100 atoms. The electronic structure probed through
photodetachment spectroscopy4 suggests that the electronic
structure of Nin clusters approaches the bulk limit forn > 14,
while that probed through the measurements of the vertical
ionization potentials5 puts this limit beyondn ) 100. Similar
controversies also exist in the magnetic moment measurement.
While the magnetic moment measured by one group7 does not
approach the bulk limit even forn ) 740, another group8 finds
this limit to be reached forn∼ 200. None of these experiments
provide much insight into the real topology of clusters.
However, Parks et al.6 have used the reactivity of Ni clusters
with N2 as a function of N2 pressure and temperature to shed
light on cluster geometry. From the plateau in the N2 uptake
data and a large number of assumptions concerning the
mechanisms for N2 chemisorption, they deduced the most likely
geometries of the Ni clusters. Recently we have analyzed9 in
detail these assumptions and compared the predicted geometries
to our calculated values. Although the agreement between our
calculated structures and those predicted by Parks et al. was
good in some cases, large discrepancies still remain. We have
argued that a closer and independent examination of the
assumptions made by Parks et al. in interpreting the N2 uptake
is needed. Recently, Apsel et al.8 have measured the magnetic
moments of Nin clusters for 5e n e 740. They argue that
their data can shed light not only on the geometries of clusters
but also on the nature of surface magnetism.
A number of first-principles calculations of the geometries

and binding energies of small Ni clusters containing up to six
atoms have been carried out. However, there are large dis-
crepancies in the calculated ionization potentials10-17 and
magnetic moments.13,16,18-25 These discrepancies arise due to
the particular choice of geometries, interatomic spacing, atomic
basis functions, approximations in the exchange-correlation
potentials, and the treatment of the core electrons. A few studies
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of the equilibrium geometries,26 binding energies, and magnetic
moments of larger Nin clusters (n e 55) based on empirical
tight binding molecular dynamics simulation21 are available. To
our knowledge, there are no systematic studies of the evolution
of the electronic structure, ionization potential, and magnetic
moment available based on first-principles theoretical technique
for larger clusters (n > 6).
In this paper we present the results of such a study. We first

repeat the calculations of equilibrium geometries, binding
energies, ionization potentials, and magnetic moments of Nin

(n e 6) clusters using self-consistent molecular orbital theory.
We examine in detail the effect of freezing the core potential,
the local spin density versus generalized gradient correction to
the density functional theory, and the choice of Gaussian versus
numerical atomic basis functions in the construction of the
molecular orbitals. Since the calculation of equilibrium geom-
etries from first principles for larger (n > 6) Ni clusters is a
very difficult task, we have used classical molecular dynamics
simulation9 that employs a tight binding form27 for the many-
body interatomic potential. To determine if this potential can
correctly predict the equilibrium geometries, we have compared
these geometries with ab initio results forn e 6 that we have
obtained using various levels of theory and computer codes.
The agreement we have obtained allows us to believe that our
molecular dynamics simulation can provide reliable geometries
for larger clusters. Using the molecular dynamics simulation,
we obtain the equilibrium geometries of Nin clusters for 6< n
e 21. The electronic structure, ionization potentials, and
magnetic moments based on these geometries were then
calculated self-consistently within the framework of the mo-
lecular orbital theory and the density functional method.
In section II we briefly discuss our theoretical procedure. The

results on the equilibrium geometries, electronic structure,
vertical ionization potential, and magnetic properties are dis-
cussed in section III. A summary of our conclusions is provided
in section IV.

II. Theoretical Procedure

Obtaining the equilibrium geometries of clusters is of central
importance as many of the interesting properties of clusters are
directly related to the special atomic arrangements within a
cluster. Since there are no direct experimental methods to
determine cluster structure, it can only be achieved at this stage
from theoretical calculations. Properties such as Raman vibra-
tional frequencies, photoelectron spectra, ionization potentials,
and magnetic moments can then be computed from these
geometries and compared with experimental data. A good
agreement between experiment and theory then provides indirect
evidence of the accuracy of the predicted structure. Although
this process appears to be a reasonable route to obtaining
information on cluster structure, the existence of isomers with
different geometrical arrangements can complicate the issue.
To make things worse, the number of likely isomers increases
dramatically with cluster size. For transition metal clusters, the
calculations are further complicated due to the quasi-localized
nature of the d electrons. Due to the large density of states at
the Fermi energy, the transition metal clusters are often
magnetic. Thus, it is necessary to calculate the equilibrium
geometries for various spin multiplicities. The existence of
clusters with different magnetic solutions, unfortunately, gives
rise to convergence problems. It is for these reasons that no
systematic understanding of the evolution of the electronic
structure and properties of Ni clusters containing up to a couple
of dozen atoms from first principles is available to date. In the

following we describe two complementary theoretical schemes
to achieve this goal: The classical molecular dynamics based
on a tight binding formulation of the interatomic potential is
used to obtain equilibrium geometries. The molecular orbital
theory is then used to calculate the electronic structure and
magnetic properties using these geometries. We now outline
the salient features of these two methods.
A. Molecular Dynamics Simulation. Molecular dynamics

simulation is a powerful technique for studying the equilibrium
geometries of clusters. The motion of atoms can be followed
by using Newton’s equation provided one has an accurate
knowledge of the interatomic potential. In principle, any atomic
displacement causes the electronic cloud to shift, which then
forces the atoms to move. Thus, the electronic and atomic
motions are coupled self-consistently. Car and Parinello28

pioneered a new technique where the molecular dynamics takes
into account atomic motion as well as quantum mechanics of
the electrons, thus avoiding the need to know a priori the form
of the interatomic potential. In addition, the quantum molecular
dynamics method provides both the atomic and the electronic
structures. Currently, the quantum molecular dynamics simula-
tion is carried out by expanding the electron wave functions in
terms of plane waves. While this has been successfully applied
to simple metals and semiconductors, its application to transition
metal clusters has been rather limited since the d electrons that
characterize these metals are quasi-localized and can be
represented only by a very large number of plane waves.
Furthermore, it is problematic to use the Car-Parinello method
to simulate systems where the energy levels shift at the Fermi
energy, as is the case with the transition metal clusters.
We have, therefore, used the conventional classical molecular

dynamics approach. The interatomic potential is taken from
the work of Finnis and Sinclair27 and Sutton and Chen.29 The
potential has the form

where

Herea is the lattice constant for bulk Ni andrij is the distance
between atomsi andj. ε, c, m, andn are parameters that have
been obtained by fitting computed properties such as cohesive
energy, bulk modulus, and surface relaxation of bulk Ni. The
use of semiempirical interatomic potentials in the molecular
dynamics simulation of small clusters raises an obvious question
regarding the reliability of the cluster geometries. We will show
in section III that the potential in eq 1 can yield reliable
geometries corresponding to the ground state not only of the
clusters but also of their isomers.
We have used constant energy molecular dynamics9 for

determining the structure of Ni clusters. Both velocity Verlet
and fifth-order Gear-predictor algorithms30 were used to inte-
grate Newton’s equations of motions with a time step of 5×
10-15 s. The total linear and angular momentum is kept zero,
and the energy is conserved to within 0.01%. Both the
algorithms give similar accuracy, and the results presented here
are obtained using the velocity Verlet algorithm. Various
random structures were generated and were assigned high
velocities so that the clusters are in the liquid state, where they
can visit many possible structures. Typically 100 different high-
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energy initial structures are used for each clustern < 13. A
fewer number of structures (typically∼50) are chosen for
clustersn > 13. Starting from such structures, the minimum
energy structure is obtained using either the steepest descent
method or the simulated annealing method where the potential
energy is taken as the control functional or by a combination
of both methods. The structures thus obtained are cataloged
and ordered by energy. Starting from the lowest energy
structure, the cluster is heated slowly following the method
suggested by Brian and Burton.30 The clusters were equilibrated
for 5 × 105 MD steps at each energy, and the ensembles are
computed from the final portion of 3× 105 MD trajectories.
The temperature of the cluster is obtained from the average
kinetic energy by the relation

wherekB is the Boltzmann constant, (3N - 6) represents the
total number of internal degrees of freedom, andEkin is the
kinetic energy of the cluster.
B. Molecular Orbital Theory. Once the equilibrium

geometries were obtained from molecular dynamics simulation,
we calculated the electronic structure and properties of Ni
clusters using the self-consistent-field-linear combination of
atomic orbitals-molecular orbital (SCF-LCAO-MO) method.31
The exchange-correlation term in the potential is ap-

proximated by using the density functional theory.32,33 Here,
we have used two levels of approximations: the local spin
density and the generalized gradient correction.34 In the
computation of the electrostatic potential, it is customary to
freeze the inner cores of the atom, as these electrons seldom
take part in the bonding and/or electronic structure and
properties. We have, however, examined the validity of this
approximation by repeating calculations including all electrons
for Nin clusters withn e 6 andn ) 13. We have also used
two different basis sets to represent the atomic orbitals. In one,
the wave function is described numerically on a radial mesh,
while in the other, the basis functions are represented by a set
of Gaussian orbitals. Errors can often be introduced by using
an incomplete basis. We have examined the effect of basis sets
by repeating the calculations using both the numerical and the
Gaussian basis. For the former we have used (3d94s1) functions
with a 4p polarization and the DMOL software,35 while for the
latter we have used (14s9p5d/9s5p3d) functions and the Gauss-
ian 94 software.36 The geometries forn e 6 are globally
optimized by starting with an initial structure and optimizing
the total energy without symmetry constraint. The forces at
the atomic sites were computed by using the gradient technique,
and the atoms were moved to new locations following the path
of steepest descent. We have performed calculations forn< 6
using both these procedures to examine how sensitive our results
are to different theoretical approach. To determine the ground
state, we computed the total energies corresponding to the
equilibrium structure for several spin multiplicities. This is
needed since most clusters have several close lying multiplets.
For each multiplicity, the equilibrium geometry, including
possible Jahn-Teller distortion, is different. Therefore, one has
to investigate all the multiplicities to find the true ground state.
In the DMOL code, we used the aufbau principle with fractional
occupation. We found that the ground state of clusters
calculated using both the DMOL and Gaussian 94 codes have
identical spin multiplicities. For larger clusters (6< n < 21),
we have used the geometries obtained in the molecular dynamics
simulation. Without further reoptimization, we have then

calculated the electronic structure (molecular energy levels), total
energy, vertical ionization potential, and magnetic moments
using the DMOL code. A detailed analysis of the geometry of
Ni13 at the first-principles level of theory is also carried out by
starting with the perfect icosahedric structure (as obtained from
the molecular dynamics simulation) and allowing the structure
to distort under reduced symmetry constraint. The ionization
potential and magnetic moments of the distorted structures were
calculated and compared with that of the perfect icosahedric
structure to examine the extent to which these results are
sensitive to Jahn-Teller distortions.

III. Results

The central prerequisite in the computation of electronic
structure and properties of clusters is their equilibrium geom-
etries. Since for clustersn > 6 we are using the empirical
interatomic potential and molecular dynamics simulation to
obtain the geometries, it is important to ensure that the potential
is accurate enough to describe the geometries and bond lengths
of clusters not only for their ground states but also for their
isomers. This is particularly important since the parameters in
eq 1 are primarily obtained by fitting to bulk data. In addition,
eq 1 does not contain any spin-dependent term, although
magnetic effects are implicitly included by fitting to properties
of ferromagnetic Ni. We first demonstrate the reliability of the
potential in eq 1 to predict geometries, bond distances, and
relative stabilities of small clusters (n e 6) by comparing the
results with ab initio calculations.
A. Reliability of the Geometries Obtained from Classical

Molecular Dynamics. In Figure 1 we give the equilibrium
geometries of Nin (ne 6) clusters calculated from first principles
using DMOL software and the LSDA level theory. The
geometries agree with those calculated recently by Salahub and
co-workers24,47using Gaussian basis sets and local spin density
approximation. The molecular dynamics (MD) simulations
using the potential in eq 1 also yield the same geometries for
the ground state. The bond lengths calculated using the first-
principles theory (DMOL) and the MD simulation are presented

Figure 1. Equilibrium geometries of small (n e 6) Ni clusters.

T) [ 2
3N- 6]Ekin/kB (3)

1750 J. Phys. Chem. A, Vol. 102, No. 10, 1998 Reddy et al.



in Table 1 and compared with the local spin density results of
Castro et al.47 Note that for Ni2 and Ni3 the bond lengths
computed using the MD method agree very well with the first-
principles calculations. For Ni4, both DMOL and MD methods
yield a perfect tetrahedron as the ground state, while the
calculations in ref 24 yield a slightly Jahn-Teller distorted
structure. Again the MD bond lengths agree with first-principles
calculations to within 0.1 Å. Similar is the case for Ni5. We
will show in the following that the ionization potential and
magnetic moment computed for the distorted geometry are
insensitive to the mild distortion in the geometry.
The binding energies calculated using the MD approach are

also compared with first-principles calculations in Table 1.
Although the binding energies computed for each of these
clusters differ from those computed from first principles, the
relative variation with cluster size is consistently predicted by
the MD calculation. We should also note that the binding
energies are almost always overestimated in the LSDA level of
theory, and for Ni2, where experimental result exists, the binding
energy calculated from MD is closer to experiment than the
first-principles DMOL result. We should remind the reader that
in the present paper the only use of MD calculation is to provide
the geometry. The electronic structure is handled by first-
principles theory.
Since the potential in eq 1 has no explicit spin-dependent

term, we have examined the influence such a term can have on
equilibrium geometry and bond lengths. We have done this
by optimizing the geometry of Ni5 within the local density
approximation (LDA) and comparing the results with those
given by using LSDA in Table 1. The corresponding bond
lengths are 2.28 and 2.24 Å and agree with the LSDA results
within 0.01 Å. We should also point out that Andriotis et al.21

have recently examined this issue by incorporating the Hubbard
approximation, which contains magnetic exchange, into the tight
binding molecular dynamics. They have found that the inclusion
of the on-site correlations does not change the geometries of
the Nin clusters, although magnetic effects strongly influence
the structure of Fen clusters. Thus we can conclude that the
geometries and bond lengths of Ni clusters would be hardly
influenced by having an explicit spin-dependent term in the
potential.
Since a cluster can have many isomers, it is important that

the MD calculations can also yield the relative stability of
various isomers reliably. To illustrate this capability, we have
studied the next higher energy isomer of Ni4 and Ni13. In Figure
2 we plot the geometries of these isomers of Ni4 and Ni13, which

are square and cuboctahedral, respectively. Both MD and first-
principles DMOL calculations yield the same geometries of the
isomers. The corresponding bond lengths and binding energies
of these isomers are given in Table 2. Note that MD simulation
using the potential in eq 1 indeed is able to give the correct
ordering of isomers (see Tables 1 and 2). Thus, we are confident
that the potential in eq 1 is able to yield reliable ground-state
geometries of Ni clusters.
B. Equilibrium Geometries and Binding Energies of Nin

(n e 21) Clusters. Using the potential in eq 1, we have recently
calculated the geometries for Nin clusters containing up to 23
atoms. The results have been published recently.9 For the
clarity of the discussion to follow, we outline only briefly the
salient features of these geometries and refer the reader to our
earlier paper9 for details. The geometries of Nin clusters (n e
6) resemble closely those found in rare-gas systems; namely,
they are symmetric and close-packed. The structures of Ni3,

Ni4, Ni5, and Ni6 are respectively equilateral triangle, regular
tetrahedron, triangular bipyramid, and distorted octahedron with
aD4h symmetry. Ni7 exhibits two isomers, a capped octahedron
and a pentagonal bipyramid, which are energetically nearly
degenerate. The larger clusters evolve with a 5-fold ring as a
common backbone leading to Ni13, which becomes a nearly
perfect icosahedron. For Ni14 and larger clusters, the added
atoms, instead of capping the faces of the Ni13 cluster, do form
6-fold rings. However, Ni19 once again shows icosahedric
growth. As cluster size increases further, it becomes increas-
ingly difficult to visualize the growth pattern. It is more

TABLE 1: Bond Lengths and Binding Energies/Atom of Nin Clusters (n e 6) Calculated Using Different Levels of Theory

quantity method Ni2 Ni3 Ni4 Ni5 Ni6 Ni13

bond lengths (Å) DMOL 2.06 2.17 2.24 2.29, 2.24 2.28 2.29
MD 2.01 2.15 2.20 2.36 2.43 2.26
ref 47 2.05 2.16 2.15, 2.28 2.36, 2.31
expt 2.155( 0.01

binding energy (eV) DMOL 3.15 3.74 4.08 4.43 4.67 5.36
MD 2.10 2.50 2.77 2.90 3.03 3.39
ref 47 1.82 2.40 2.82 3.07
expt 1.034

TABLE 2: Geometries, Bond Lengths, and Binding Energies of Ni4 and Ni13 Isomers Calculated Using MD and DMOL

bond length (Å) binding energy/atom (eV)

cluster geometry DMOL MD DMOL MD

Ni4 tetrahedron 2.24 2.20 4.08 2.77
square 2.15 2.12 3.93 2.61

Ni13 icosahedric 2.29 2.26 5.36 3.39
cuboctahedric 2.29 2.35 5.31 3.34

Figure 2. Geometries of isomers of Ni4 and Ni13 clusters. These
correspond to energies just above the ground states.
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meaningful then to examine the evolution of the coordination
number that characterizes the number of nearest neighbors an
atom has in a cluster. Note that in bulk Ni, which has a fcc
structure, this number is 12, and for an atom on the (111)
surface, the coordination number is 9.
The average coordination number in a cluster is defined as

where theith atom hasNi number of nearest neighbors.N is
the total number of atoms in the cluster. In Figure 3a we plot
the average coordination number as a function of cluster size.
Note that the coordination number rises steadily untiln ) 15
and then exhibits some minor oscillations. Even for the largest
cluster studied, i.e.,n) 23, the coordination number is far from
the bulk value of 12. This is what is expected since for all
these clusters most atoms are surface atoms and the coordination
number for crystalline surface is less than 9. In Figure 3b we
plot the size dependence of the average bond distance in these
clusters. Note that the interatomic distances rise steadily and
show some oscillatory behavior beyondn) 14. The oscillations
in the coordination number and interatomic distance are not
common in simple metal clusters and result due to unique
bonding characteristics in transition metal systems. We will
show in the following that the evolution of the coordination
number and interatomic separation has a strong effect on the
electronic structure and magnetic moments of Ni clusters.
Using the geometries derived from the molecular dynamics

simulation, we have calculated the total energies based on the
self-consistent molecular orbital theory and the local spin density
approximation. The binding energy/atom is calculated using
the equation,

whereE(n) is the total energy of then-atom cluster andE0 is
the energy of the free atom. We have plotted these energies in

Figure 4 and compared them to the corresponding values
obtained previously from the molecular dynamics simulation.
Note that while there are significant quantitative differences
between the binding energies calculated by these two methods,
their systematics remain unaffected; namely, both calculations
yield a fairly monotonic increase in the binding energies with
no anomalous feature that can point to the existence of magic
numbers, as has been found in alkali metal clusters.
C. Electronic Structure and Vertical Ionization Potential.

The understanding of the evolution of the electronic structure
as atoms coalesce to form clusters of increasing size is just as
important as the understanding of the evolution of their atomic
structure and binding energies. As pointed out earlier, neither
the geometries nor the coordination numbers of Nin clusters for

Figure 3. The evolution of (a) the average coordination number and (b) the interatomic distance of Ni clusters as a function of size.

CN)
1

N
∑
i

Ni (4)

Eb(n) ) -[E(n) - nE0]/n (5)

Figure 4. Comparison between the binding energies of Nin clusters
calculated from molecular dynamics simulation (solid circles) and self-
consistent molecular orbital theory (open circles).
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n e 23 resemble the bulk. Does this mean that the electronic
structures of these Ni clusters are also far from being bulklike?
Fortunately, experiments can probe the evolution of the
electronic structure of clusters far better than they can probe
the geometries. One of these techniques is based on the
photoelectron spectroscopy. Here a size-selected cluster anion
is photodetached by a fixed-wavelength photon. The photo-
emitted electrons, which carry the electronic structure informa-
tion of the neutral clusters, are then energy analyzed. A
systematic study of the photoelectron spectra can then illustrate
how the electronic structures of clusters change from discrete
levels to bandlike as cluster size increases. Wang and Wu4 have
measured the photoelectron spectra of Nin clusters for 1< n <
50. They have observed an odd-even alternation in the electron
affinities for 1< n< 5, with even clusters having lower electron
affinities and sharper features near the threshold compared to
the odd clusters. The spectra beyond Ni14 show little change
as cluster size increases. This would seem to imply that the
bandlike states of Ni clusters have already emerged in clusters
as small asn ) 14. Note that the interatomic distance and
binding energies shown in Figures 3 and 4 do not vary strongly
for n > 14, but are far from the bulk limit.
We have computed the molecular orbital energy values for

both spin-up and -down states self-consistently for clusters
containing up to 21 atoms by using the equilibrium geometries
discussed earlier. In Figure 5 we show the energy gap between
the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO). Note that beyondn )
14 the HOMO-LUMO gap essentially ceases to exist and the
energy levels come so close to each other that they appear
bandlike. Since the photoelectron detachment spectroscopy
primarily measures the density of states of the neutral clusters,
it is easy to see that the size specificity loses its significance
beyondn ) 14. This is in agreement with the work of Wang
and Wu.4

The electronic structure information can also be extracted
from the near-threshold photoionization efficiency (PIE) experi-
ments. Here one measures the ionization potential of the neutral
clusters. The PIE spectra are broadened if the geometry of the
cluster undergoes significant modifications during the photo-
ionization process. This effect is particularly pronounced for

small clusters, as their geometries are most likely to change
upon ionization. In very large clusters approaching the bulk
limit, removal of a single electron is not expected to cause
structural modification. Knickelbein et al.37 have measured the
vertical ionization potential (defined as the energy needed to
remove an electron from a neutral cluster without modifying
its geometry) of Nin clusters for 3< n < 90. We begin with
a qualitative discussion of their results. (1) The ionization
potentials do not exhibit any sharp drops for particular cluster
sizes, as has been the hallmark in all alkali metal clusters. These
along with the lack of clear maxima in the binding energies in
Figure 4 indicate that there are no magic clusters in Ni. (2)
The ionization potential exhibits strong size dependence forn
e 11 and approaches relatively smoothly and nearly monotoni-
cally from 5.84 eV for Ni11 to 5.56 eV for Ni90. Note that (100),
(110), and (111) surfaces of bulk Ni have work functions (WFs)
of 5.22, 5.04, and 5.35 eV, respectively. Thus, from the PIE
experiment, the electronic structure of Ni90 could be thought of
as being different from the bulk value since the ionization
potential does not lie in the range 5.04-5.35 found in the bulk.
This is in sharp contrast to the conclusion of Wang and Wu4

that the electronic structure of Ni14 is already bulklike.
A large number of theoretical calculations10-17 of the

electronic structure and vertical ionization potential of small (n
e 6) Ni clusters is available in the literature. However, most
of these calculations either have used the bulk geometry and
bulk interatomic distance for the Ni clusters or are based on
semiempirical methods. Only a few calculations are available
where the geometries of small Ni clusters have been globally
optimized. In Table 3 we provide a summary of the previous
theoretical results on the vertical ionization potential. As can
be seen, the results vary over a wide margin. It is difficult to
pinpoint whether the discrepancy between theory and experiment
is due to poor choice of geometry, interatomic distance, and/or
the calculational method.
In this paper, we provide the first systematic study of the

vertical ionization potential of Nin clusters containing up ton
) 21 atoms. Our results are obtained from total energy
calculations of the neutral and singly ionized clusters using the
self-consistent molecular orbital theory. The vertical ionization
potential is given by

where E(Nin) is the total energy of the neutral cluster and
E(Nin+) is the total energy of the corresponding singly charged
cluster having the neutral geometry. The results are compared
with the experimental data in Figure 6. Note that calculated
ionization potentials reproduce the systematics rather well;
namely, they are very sensitive to cluster size in the range 2e
n e 7. Beyond this range, the maximum difference in the
calculated IPs between any two clusters is about 0.4 eV.
Experimentally, this number is 0.3 eV. What is noteworthy is
that the experimental IPs show little fluctuation with size beyond
n ) 11, while theoretically the IPs of clusters withn ) 13 and
18 show clear maxima.
The quantitative agreement between theory and experiment

is, however, not perfect, although most calculated values agree
with experiment to better than 10%. Now let us discuss the
possible sources for this discrepancy. (1) One obvious reason
could be that the geometry obtained from the molecular
dynamics may not be as accurate as one would expect from an
ab initio theory (assuming it could be obtained!). Interestingly,
the maximum disagreement between the calculated and experi-
mental IP is not for large (n> 7) clusters, but rather for smaller

Figure 5. Energy gap between highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) of Nin

clusters.

IP) E(Nin
+) - E(Nin) (6)
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clusters (n e 6), where geometries are obtained from first
principles. For example, our calculated IP for Ni3 is 0.7 eV
larger than the experimental value. To examine what errors
minor changes in the geometries can cause, we have calculated
the vertical ionization potentials and magnetic moments of Ni4,
Ni5, and Ni13 using the geometries (with corresponding bond
distances) obtained from both the MD simulation and the first-
principles (DMOL) theory. The results are compared in Table
4. Note that the vertical ionization potentials change by about
0.1 eV, while the magnetic moments remain unaffected when
one uses MD-based geometries. (2) The second source of error
could be our use of the frozen-core and local spin density
approximation. We have, therefore, repeated our calculations
of the equilibrium geometries, binding energies, and ionization
potentials using molecular orbital theory with all electrons and
generalized gradient approximation. All levels of theory give
identical geometries, which are given in Figure 1. The
corresponding structural parameters, binding energies, and IPs
are given in Table 5. Note that the bond distances, binding

energies, and ionization potentials are essentially unaltered
whether one uses all electron or frozen-core approximation at
the same level of exchange-correlation potential. However,
the energetics (binding energies and vertical ionization poten-
tials) are different when the generalized gradient approximation
is used for the exchange-correlation potential. The binding
energies are lowered as are the vertical ionization potential,
bringing theory to closer agreement with experiment with the
exception of Ni6. (3) We next discuss the possible effect
temperature may have on the ionization potential. It is expected
that open shell systems such as transition metal clusters of Ni
should be characterized by a number of low lying excited states.
This is supported by theoretical calculations that predict a high
density of states at the Fermi energy that increases with cluster
size and symmetry. The photoelectron spectra of Ni3 through
Ni18 recorded by Gantefor et al.38 also indicate a very high
density of electronic states lying just above the highest occupied
molecular orbital (HOMO). The electronic states within 0.1
eV are comparable to the thermal energies of the clusters and
hence are accessible by the clusters produced by laser vaporiza-
tion in the absence of effective cooling techniques. One then
wonders if the electrons in these allowed transitional states affect
the IPs of the clusters.
The study of temperature dependence of structure and

properties of clusters should be ideally carried out by taking
into account the coupling between electronic and atomic motion
self-consistently. While the Car-Parinello method28 can, in
principle, accomplish this goal at any temperature, its application
to transition metal systems is difficult as mentioned before.
Therefore, an alternate route has to be found to at least
qualitatively assess the effect of temperature. We are working
toward such a goal, and the results will be published in due
course.
In summary, a quantitative understanding of the experimental

ionization potential would require a theory that goes beyond
the local spin density approximation and includes the effect of
temperature. We note that the effect of the gradient correction
in the exchange-correlation potential is to lower the ionization
potential. Interestingly, the theoretical values based on 0 K
structure and local spin density approximation are larger than
experiment (see Figure 6). The gradient correction alone,
unfortunately, does not bring theory into quantitative agreement
with experiment. A realistic treatment of the effects of
temperature may be needed for this purpose.
D. Magnetic Moments. The study of the magnetic proper-

ties of low-dimensional systems such as surfaces, multilayers,
and nanoparticles in the past few years has clearly demonstrated
not only that the magnetic moments of ferromagnetic elements
are enhanced over the bulk value39 but nonmagnetic elements
could also exhibit magnetic order.40 These observations have

TABLE 3: Summary of Calculated Vertical Ionization Potentials (eV) for Small Nin (n e 6) Clusters

authors method Ni2 Ni3 Ni4 Ni5 Ni6

Blyholdera ref 10 6.8 6.5 6.3 6.3 6.3
Adachi et al.b ref 11 5.1
Basch et al.c ref 12 5.4 3.9 4.4 4.7 4.9
Rösch et al.d ref 13 5.85
Nygren et al.e ref 14 6.08 5.83 6.65
Wolf & Schmidtkef ref 15 3.4
Tomonari et al.g ref 16 5.7 4.2 5.1 4.8 4.4
Pastor et al.h ref 17 6.5 6.2 6.2 5.9 5.6
present worki 8.3 6.8 5.9 6.6 6.8
experimental refs 52, 53 7.6 6.12 5.70 6.20 6.78

aCNDO. bDVM-X R with symmetry constraint optimization.c ECP SCF-CI [bulk fragments with a fixed bulk nearest neighbor distance]
d LCGTO-LSD [fixed bulk Ni-Ni distance].eACPF+CPP [fixed bulk nearest neighbor distance].f SCF-LCAO-MO-RHF.g SCF-LCAO-MO/CI
[bulk Ni-Ni distance is fixed for N) 4, 5, and 6].h Tight binding method [nonoptimized geometries].i SCF-LCAO-MO/DFT.

Figure 6. Comparison between theoretical (solid circles) and experi-
mental (open circles) ionization potentials of Ni clusters.

TABLE 4: Comparison of Calculated Vertical Ionization
Potentials and Magnetic Moments/Atom of Ni4, Ni5, and Ni13
Using Geometries from MD and DMOL Procedures

quantity method Ni4 Ni5 Ni13

vertical ionization potential (eV) DMOL 5.92 6.60 6.32
MD 5.81 6.46 6.38

magnetic moment/atom (µB) DMOL 1.0 0.8 0.62
MD 1.0 0.8 0.62
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generated a lot of interest in the study of magnetism of clusters.
As already discussed, most atoms in clusters are surface atoms,
and clusters can, therefore, be classified as low-dimensional
systems. Clusters of magnetic elements are expected to possess
enhanced magnetic moments,41 while clusters of nonmagnetic
elements could sustain magnetic order.42 It is also expected
that clusters can be used to study the evolution of surface
magnetism since in the limit of infinite size the surface of a
cluster should resemble that of a crystal.7

Clusters, however, possess other unique features that are not
common to crystal surfaces and multilayers. Among these are
their unique structures, atomic coordinations, and interatomic
distances. Theoretical studies43 have indicated that the magnetic
moment is an indicator of the overlap of electron distribution
between neighboring sites: the greater the overlap, the lower
the moment. Thus, an increase in atomic coordination would
tend to reduce the moment, while an increase in the interatomic
distance would enhance the moment. In addition, the cluster
symmetry also plays a role. For example, a 13-atom cluster
exhibiting icosahedric shape would have a different magnetic
moment than if it is cuboctahedric. Since the geometry, atomic
coordination, interatomic distance, and symmetry depend strongly
on size, the study of magnetism of clusters can provide unique
insight into the fundamental origin of magnetism.
Early experiments44 on size-selected Fe clusters consisting

of up to several hundred atoms produced some interesting
results. (1) The effective magnetic moment,µeff, per atom of
a cluster was smaller than the bulk magnetic moment and
increased with cluster size. This is contrary to what one would
have expected from a wealth of data on magnetism of low-
dimensional systems such as surfaces and multilayers. Due to
low coordination number in clusters (see Figure 3),43 the
magnetic moment per atom of a cluster should be larger than
the bulk value and should decrease with increasing size. (2)
The effective magnetic moment of a cluster increases with
increasing magnetic field. In the bulk the magnetic moment/
atom is independent of the field. (3) The last, and perhaps the
most important, aspect of cluster magnetism is associated with
its temperature dependence. While one experimental group
observes that the effective magnetic momentincreaseswith
temperature, another experimental group reports just the op-
posite.45 Note that in bulk ferromagnetic metals, the magnetic
moment of the atom is independent of temperature, while the
average magnetization decreases with temperature. These
unique observations have led one to wonder if cluster magnetism
is fundamentally different from bulk magnetism.
The size and field dependence of cluster magnetism has been

successfully explained by the superparamagnetic model, where
the cluster is considered to be a ferromagnetically aligned single
domain.46 The anisotropy energy is assumed to be much smaller
than the thermal energy. During the residence time of the cluster
in the magnetic field, the intrinsic magnetic moment, under
thermal agitation, explores much of the Boltzmann distribution

of magnetic moment orientations in space. This leads to the
Langevin function for the time-averaged magnetic moment per
atom,µeff:

whereµ is the intrinsic magnetic moment per atom,N is the
number of atoms in the cluster,B is the applied magnetic field,
T is the temperature, andkB is the Boltzmann constant. For a
fixed temperature,T, the above formula explains the observed
field and size dependence of the average magnetic moment.
The computation of the intrinsic moment,µ, from eq 7 can

be simplified in the limitNµB , kBT. With this assumption,
eq 7 leads to

Since in a Stern-Gerlach experimentB andN are known,µ
can be easily calculated from the measured value ofµeff only if
the cluster temperatureT is known precisely. There is consider-
able controversy in the literature concerning how accurately the
cluster temperature can be determined. While for very small
clusters, the temperature has been unambiguously determined,
it is believed that the task is very difficult for large clusters. In
addition, even if the cluster temperature is precisely known, eq
7 will yield only the magnetic moment,µ, at that temperature.
Since theoretical calculations are done at 0 K, a quantitative
comparison between theory and experiment can be done only
if µ can be computed at the cluster temperature. As we have
already seen in the previous section, the temperature can have
significant impact if for a given cluster the spacings between
energy levels near the HOMO level is comparable tokBT.
Recently Apsel et al.8 have measured the effective moment

of Nin clusters containing 5-740 atoms using a Stern-Gerlach
magnet. They have then used eq 7 to extract the intrinsic
moment per atom,µ, by taking the cluster temperature to be
73-198 K. There are several interesting features to note. (1)
The intrinsic moments, as expected, are indeed larger than the
bulk value of 0.6µB and do not even approach the bulk limit
for n) 740. (2) The magnetic moment of Ni5 is almost 3 times
the bulk value and decreases rapidly to a value of 0.9µB for
Ni13. (3) The variation in the moment is nonmonotonic and
shows distinct minima atn ) 13, 34, and 58.
We first provide a qualitative discussion of their results. The

enhancement of magnetic moments in clusters over the bulk
value is due to low coordination (see Figure 3). Apsel et al.
have argued that their results can illustrate the magnetic
properties of surfaces. Note that the cluster surfaces are entirely
different from crystal surfaces. For example, the magnetic
moment of surface atoms in Ni(100)39 is 0.68µB, which is only
marginally enhanced over the bulk value of 0.6µB. On the
contrary, the magnetic moment of the largest cluster Bloomfield

TABLE 5: Comparison of Our Results from Various Levels of Theory

bond length (Å) binding energy/atom (eV) ionization potential (eV)

cluster
size,n

all-electron
LSD

frozen-core
LSD

frozen-core
GGA

all-electron
LSD

frozen-core
LSD

frozen-core
GGA

all-electron
LSD

frozen-core
LSD

frozen-core
GGA expt

2 2.06 2.06 2.09 3.15 3.11 2.64 8.34 8.30 7.89 7.6
3 2.17 2.17 2.24 3.74 3.70 3.00 6.86 6.83 6.38 6.12
4 2.24 2.24 2.30 4.08 4.04 3.17 5.90 5.92 5.43 5.70
5 2.29 2.29 2.35 4.43 4.40 3.44 6.58 6.60 6.01 6.20

2.24 2.24 2.31
6 2.28 2.27 2.33 4.67 4.64 3.58 6.78 6.82 6.34 6.78

2.28 2.29 2.33

µeff ) µ[coth(NµB
kBT ) -

kBT

NµB] (7)

µeff ) (Nµ)2B/3kBT (8)
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et al. have measured is about 0.9µB. More importantly, the
magnetic moment drops by a factor of 2 from Ni5 to Ni12. In
this range, all atoms are surface atoms. Thus, it is very difficult
to relate cluster magnetism to crystal surface magnetism. What
is important in cluster magnetism is not that most atoms are
surface atoms, but that their coordination number varies strongly
with size. This variation is linked to the topology of the clusters.
This can be seen by comparing the results in Figure 3 with the
experiment.8 We note that the coordination number steadily
rises with cluster size and is far from the crystal surface value
of 9. Since the magnetic moment decreases with increasing
coordination, the experimental results can be qualitatively
understood. We will show in the following that a quantitative
understanding requires far more than just counting the number
of surface atoms versus bulk atoms.
A number of calculations of magnetic moments with varying

degrees of approximations have been carried out for small Ni
clusters.13,16,18-25 The calculated values vary over wide ranges.
For example, for Ni3, the calculated values13,16,18,21,25for the
moment per atom range from 0.67µB/atom to 1.33µB/atom. For
Ni4, the values range from 0.5 to 1.5µB/atom16,19,21,22,24,25, for
Ni5, from 0.8 to 1.6µB/atom,13,16,21,24,25and for Ni6 from 1 to
2.0µB/atom.13,16,19,20,21,25Part of the discrepancy arises because
some authors have assumed the geometry of the Ni clusters to
be bulklike with bulk interatomic spacing. Since the magnetic
moments are sensitive to cluster geometry and interatomic
separation, a comparison of these results with the experimental
value or with ab initio calculations that make use of optimized
geometries is not very fruitful. What is discomforting is that
magnetic moments calculated using optimized geometries by
various authors are not in agreement. Note that for Ni3, our
computed moments of 0.67µB/atom agree with the calculations
of Khanna and Reuse,25 who used pseudopotentials, local spin
density approximation, and Gaussian orbitals, but disagree with
those obtained using the configuration interaction technique.
However, for Ni4, our calculated moment disagrees with that
derived by Khanna and Reuse. Unfortunately, there are no
experiments on Ni3 and Ni4 that can be compared with theory.
For Ni5, however, an experimental result does exist. The
experimental moment/atom is 1.8µB. This is close to the value
of 1.6µB calculated by Khanna and Reuse, which is a factor of
2 larger than that presented here. We would like to add that
Castro et al.47 have recently calculated the moments of Fen, Con,
and Nin clusters containing up to five atoms using Gaussian
basis and density functional theory. They obtain a moment of
0.8µB for Ni4 and 1.0µB/atom for Ni5, which agrees with our
present results. The calculations carried out by Khanna and
Reuse25 employ norm-conserving pseudopotentials which are
based on atomic calculations including relativistic effects and
vacuum polarization. The pseudopotentials, however, do not
take into account the polarization of the atomic cores. These
authors have now carried out a nonrelativistic all-electron
calculation similar to those reported here and find the same
results for the magnetic moments as reported in Table 6. It
will be interesting to see if relativistic effects are important by
carrying out an all-electron calculation, including the relativistic
effects.
To gain further confidence in our present results, we have

repeated the calculations up ton ) 5 using Gaussian basis and
Gaussian 94 software. We have also used two levels of
approximation in the exchange-correlation potential (local spin
density vs generalized gradient). In addition, we have carried
out all-electron calculations and compare these with the results
of the frozen-core calculation. The geometries are optimized

at each of these levels. The results calculated using both DMOL
and Gaussian 94 software for Nin (ne 5) are in agreement with
each other and are given in Table 6. We also note that the
freezing of the core and/or using local spin density approxima-
tion yields the same moments as when these approximations
are avoided. The fact that our extensive analysis of Ni5 results
in a magnetic moment that also agrees with the recent calculation
of Castro et al.47 but differs markedly from experiment raises
some serious concerns. We will discuss this more critically
later in the section.
For clusters withn> 6 we have used the globally optimized

geometries from our molecular dynamics simulation and the
molecular orbital theory within the local spin density ap-
proximation to calculate the moments. This is in contrast to
the calculation of Menon et al.,21 who used the semiempirical
tight binding theory to calculate the geometry as well as the
moments. We believe that our study goes a step beyond what
has been presented by Menon et al.
In Figure 7 we compare our calculated moments with the

experimental result of Apsel et al. Note that the theory
reproduces the general trend of the size dependence of the
magnetic moment; namely, the magnetic moments are enhanced
over the bulk value, vary nonmonotonically with size, and
decrease significantly as cluster size increases fromn ) 2 to n
) 13. In addition, the magnetic moment shows marked
fluctuations at small sizes. To understand the origin of these
changes, we carried out a Mulliken population analysis of the
resulting charge density and the contributions of the s, p, and d
electrons to the moment. While the d moment was around 0.8µB

TABLE 6: Comparison between Magnetic Moments
Calculated Using DMOL and Gaussian 94 Software for Nin
(n e 5) Clusters Using Various Levels of Theory

DMOL

cluster
size

all-electron
LSD

frozen-core
LSD

frozen-core
GGA

Gaussian 94
effective core

potential and GGA

2 1.00 1.00 1.00 1.00
3 0.67 0.67 0.67 0.67
4 1.00 1.00 1.00 1.00
5 0.80 0.80 0.80 0.80

a For example, using a Gaussian 94 code, we found that for Ni4

confined to a rhombus structure, multiplicities 3, 7, and 9 are 0.25,
0.21, and 2.6 eV above the ground state with a multiplicity of 5.

Figure 7. Comparison between calculated (solid circles) and experi-
mental (open circles) magnetic moments of Nin clusters (2e n e 21).

1756 J. Phys. Chem. A, Vol. 102, No. 10, 1998 Reddy et al.



in most cases, the combined s and p moment was-0.01,-0.08,
0.24, 0.08, 0.33, and 0.08 for Ni2, Ni3, Ni4, Ni5, Ni6, and Ni7,
respectively. The fluctuations are, therefore, due to the variation
in s and p polarization. We also found that these polarizations
become negligible for clusters containing more than 14 atoms.
The overall variation in the moment is consistent with the rapid
rise in the coordination number shown in Figure 3. However,
there are some serious quantitative differences between theory
and experiment. For example, as mentioned before, the
experimental value of the moment in Ni5 is almost a factor of
2 larger than our calculated value. While experiment shows a
small increase in the moment in going from Ni6 to Ni7, the
theoretical value shows an abrupt decrease. The experimental
moment shows a minimum at Ni13, while the theory predicts a
continuing decrease in the moment untiln ) 16.
We first examine these discrepancies individually. The sharp

drop in the experimental moment on going fromn ) 5 to n )
6 was thought by Apsel et al. to be due to a geometrical effect,
as Ni5 is a triangular bipyramid and Ni6 is a compact octahedron.
Note that while the average coordination rises on going from
Ni5 to Ni6 (see Figure 3), which should cause a decrease in the
moment as observed, the average interatomic distance also
increases from Ni5 to Ni6. This would tend to increase the
moment of Ni6 compared to Ni5. Thus, these two factors act
in opposite directions, and the quantitative nature of cluster
magnetic moment cannot always be attributed to atomic
coordination alone. On going from Ni13 to Ni14, neither the
average coordination nor the interatomic distance changes
significantly (see Figure 3). Thus, it is surprising that the
experimental magnetic moment of Ni14 is larger than that of
Ni13. We also predict Ni15 to be less magnetic than Ni14 in
contradiction with the experiment. While the average coordina-
tion increases marginally on going from Ni14 to Ni15, the average
interatomic distance drops precipitously. Both these factors act
in unison to decrease the moment of Ni15 compared to Ni14,
exactly as our calculated result shows in Figure 7. To
demonstrate this more clearly, we show in Figure 8 the
geometries of Ni14 and Ni15. Note that the geometry of Ni14

evolves by capping one of the triangular faces of Ni13, which
is icosahedric and thus has an open structure. The structure of
Ni15 is quite different: three coaxial atoms are connected to
two hexagonal rings and Ni15 is much more compact than Ni14.
It is important to emphasize that the calculated geometries of
Ni12, Ni13, and Ni14 are in agreement with the N2 adsorption
data of Riley and co-workers.6

To analyze where the blame for the above discrepancy lies,
we first discuss the limitations in the theory that could contribute
to this discrepancy. (1) First of all, the geometries we have
used forn > 6 are those obtained from molecular dynamics
simulation. Since the many-body potential did not contain an
explicit magnetic term, it is legitimate to ask if these geometries

could be in error and thus cause an error in the calculated
magnetic moment. As noted before, the absence of a magnetic
component in the potential has been shown to have little effect
on the structure. Second, geometries calculated from molecular
dynamics simulation agree perfectly with those obtained from
ab initio spin-dependent calculations. More importantly, the
worst disagreement between theory and experiment in Figure
7 is for Ni5, for which the geometry was obtained from first
principles. Since our computed magnetic moment of Ni13 also
disagrees with the experimental trend, we have examined the
geometry of this cluster in detail by using the ab initio theory.
We allowed the cluster to undergo distortion by lowering the
symmetry fromIh toD2h. In Figure 9 we show the structure of
Ni13 icosahedron, which could also be thought of as a central
atom surrounded by three rectangles (atoms 1 2 3 4, 5 6 7 8,
and 9 10 11 12) with sidesa andb. With D2h symmetry we
varieda andb to minimize the energy at the local spin density
molecular orbital level of theory. These values changed slightly
from the perfect icosahedric shape. For a perfect icosahedron
of Ni13, a ) 1.9517 Å andb ) 1.2061 Å. In the present case,
for the optimized structure with theD2h symmetry,a ) 1.9687
Å andb) 1.1781 Å. However, the magnetic moment remained
at the initial value of 0.62µB. Note that several other authors
have reported the same value for Ni13.25,48 (2) The results in
Figure 7 are obtained by making the frozen-core approximation
and using the local spin density approximation. By repeating
calculations for Nin (n e 6, n ) 13) by including all electrons
and by using the generalized gradient correction we demon-
strated that these assumptions do not affect the calculated
moment. (3) As indicated before, the magnetic moments are
measured at the ambient cluster temperature, while the theory
corresponds to 0 K. Since the energy levels near the HOMO
are rather closely spaced, we expected that a structural change
induced via rising temperature could affect the spin-up and
-down levels, thus changing the moment. To assess this effect
qualitatively, we used two random geometries accessed by Ni7

and Ni13 at higher temperatures (101 and 401 K). The magnetic
moments/atom computed for these geometries were the same
as those computed for geometries at 0 K.
We now turn to a more critical examination of the experi-

mental data. First as mentioned before, Apsel et al.8 derived
the intrinsic moments by assuming a superparamagnetic model.
This model assumes that the anisotropy energy is small
compared to thermal energy. The cluster then explores the entire
distribution of orientations during its passage through the magnet
and behaves like a paramagnetic atom. While this is a good
first approximation, the shape, surface, and volume contributions
to anisotropy can become significant at small sizes. For
example, in the case of granular alloys of Fe in matrixes, Xia
et al.49 have measured a value of anisotropy energy per unit
volume to be 2× 107 erg/cm3 for 20-40-Å particles. Using

Figure 8. Equilibrium geometries of Ni14 and Ni15 clusters. Figure 9. Icosahedric geometry of the Ni13 cluster.
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the same value for clusters, one finds that Fen clusters having
120-140 atoms will have an anisotropy energy equivalent to a
thermal energy at around 90 K. While there is no such measured
data on nickel particles, one can expect a similar value for
anisotropy energy. As shown by Jensen and Bennemann,50 the
inclusion of anisotropy contributions can have a quantitative
effect on the moments derived using eq 7. Second, even if the
superparamagnetic model were valid, one needs to know the
precise temperature of the cluster to derive its magnetic moment
(see eq 7). Determination of the cluster temperature has
remained a controversial issue among experimentalists. Since
there is no unambiguous method to derive the cluster temper-
ature, the experimental magnetic moments obtained using eq 7
have to be regarded as tentative. In this context, we should
point out that the magnetic moments measured by Apsel et al.8

and de Heer and co-workers7 are not in agreement. For
example, de Heer et al. have observed that the moment of Ni200

is about 0.6µB; that is, it is almost bulklike. On the other hand,
the moment of the Ni200 cluster measured by Apsel et al. is not
bulklike and, indeed, disagrees with the experimental result of
de Heer et al. by almost 50%. These authors did not study small
Nin clusters. It will certainly be worthwhile for other authors
to repeat the experiments on magnetic moments of Nin clusters
for 2 e n e 1000.

IV. Conclusions

This paper provides the first comprehensive study51 of the
electronic structure, vertical ionization potential, and magnetic
moments of Nin clusters containing up to 21 atoms. The results
were obtained from first principles using molecular orbital
theory. The geometries of the clusters containing up to six
atoms were globally optimized at the ab initio level, while those
containing 7-21 atoms were obtained from a classical molecular
dynamics simulation.
We have examined the effect of frozen-core and local spin

density approximation by repeating the calculations for Nin (n
e 6 andn ) 13) that included all electrons and generalized
gradient approximation. The geometries, bond distances, and
magnetic moments were found to be insensitive to these
approximations. While all-electron calculations had no effect
on the binding energies and ionization potentials, the generalized
gradient approximation lowered the magnitude of these values,
bringing theory to much closer agreement with experiment.
The calculated ionization potentials at the local spin density

approximation level of theory reproduce the experimental trend.
However, to achieve quantitative agreement, inclusion of
generalized gradient approximation in the exchange-correlation
potential and temperature of the cluster will be needed.
The evolution of the electronic structure as clusters grow was

probed by studying the molecular orbital energy levels. These
approach a bandlike form for clusters as small asn ) 14,
implying that the electronic structure is bulklike. This in
agreement with the photoemission studies of Wang and Wu.
However, the calculated ionization potential for then ) 21
cluster is far from the bulk work function. Thus, different
cluster properties evolve differently.
The magnetic moments of clusters were also calculated.

Although these agree with the experimental trend qualitatively,
serious quantitative discrepancies remain. Possible sources from
both theory and experiment that could contribute to these
discrepancies were critically examined. We came to the
conclusion that the cluster temperature is at the heart of the
problem, as the validity of the superparamagnetic model which
was used to fit the experiment depends on the cluster temper-

ature. We also argued that magnetism of clusters is not a simple
surface phenomenon, as coordination number, interatomic
distance, and specific symmetry influence the magnetic moment
significantly. Thus, we showed that cluster magnetism cannot
tell us anything about magnetism of crystal surfaces. Such
studies in other transition metal systems such as Fen and Con
will be very worthwhile.
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